欢迎来到北京普利莱基因技术有限公司官网商城
购物车 注册/登录 010-60781808

液体样本葡萄糖GLU含量测定试剂盒(氧化酶法) E1010

品牌名:普利莱

货号:E1010

规格:
价格:750-750
加入购物车 立即购买
  • 产品详情
  • 说明书下载
  • 引用文献

产品描述:

葡萄糖能够为组织细胞提供能量。生理性饥饿、剧烈运动、营养不良状态都会导致血糖降低,糖尿病、肥胖等疾病会使血糖升高。采用氧化酶法进行葡萄糖含量测定,是世界卫生组织和中国《全国临床检验操作规程》推荐的临床血糖检测方法。本试剂盒对此法经过改良,使检测灵敏度比普通方法提高约10倍,其检测下限为5~10µmol/L,线性范围在10~20000 µmol/L。适用于测定动物组织细胞内低浓度葡萄糖含量,也胜任各种临床和基础实验中对于葡萄糖含量的测量。

产品特点:

1.  稳定性好 操作简单

2. 灵敏度高 线性范围广 

3. 组织或细胞内 血液 尿液 培养基上清均可测定

4. 微量样本即可使用酶标仪高通量测定

品组成(200次)

(1)1ml葡萄糖标准品10 mmol/L (等于180 mg/100 ml);

(2)16 ml试剂R1

(3)4 ml试剂R2;

(4)50 ml裂解液

储存条件

4 ºC 保存 6个月有效

注意事项

1. 人空腹血糖参考值3.89-6.11 mmol/L (70-110 mg/dl),低血糖症临界水平2.7-3.89 mmol/L,高血糖症临界水平6.11-7.22 mmol/L。不同单位之间的换算公式:1 mmol/L = 0.0555 mg/100 ml (dl);1 mmol/L × 18 = 1 mg/100 ml (dl)。

2. 检测线性范围0.02~20 mmol/L。浓度超过20 mmol/L用蒸馏水或生理盐水稀释1-2倍后测量。批内变异系数为0.7~2.0%,批间变异系数为~2%。准确度与精密度可达到临床检测要求。

3. 不能用于直接测定尿液葡萄糖含量。尿液中尿酸浓度比较高,会消耗葡萄糖氧化酶反应中产生的过氧化氢,降低呈色反应,从而引起负误差使结果偏低。还原性物质如尿酸、抗坏血酸、胆红质、谷胱甘肽可竞争消耗反应产生的过氧化氢,使测定结果偏低。含强还原剂如二硫苏糖醇、巯基乙醇样品不建议使用本法。本法反应终体系可容忍的干扰物质最高浓度:血红蛋白10 g/L,黄疽标本胆红素340 μmol/L,氟化钠3 g/L,尿素46.7 mmol/L (280 mg/dl),尿酸2.95 mmol/L (50 mg/dl),肌酐4.42 mmol/L (50 mg/dl),半胱氨酸50 mg/dl,甘油三酯500 mg/dl。

4. 《全国临床检验操作规程》指明测定血糖用草酸钾-氟化钠抗凝:每5ml血液加0.2 ml 6%草酸钾-4%氟化钠;其优点是抑制糖酵解和分解,测得的葡萄糖浓度更接近真实;缺点是干扰其它生化检查项目。枸椽酸钠抗凝剂易引起溶血,也干扰许多生化检查项目。如必须用同一份标本做全套生化检测,可采用肝素钠抗凝剂。

5. 血样应在30分钟内完成测定。血清或血浆仍含大量血细胞,室温下糖酵解旺盛可消耗葡萄糖使测量值降低。室温放置1小时葡萄糖含量开始降低,3小时后明显下降。4 ºC保存血样,葡萄糖稳定性明显增加。使用血浆测定葡萄糖浓度可能更接近真实浓度。相比之下用血清标本测得的葡萄糖浓度偏低,且随着样品放置时间延长而明显下降。

应用展示:


1.png

文献来源:Identification of the antibiotic ionomycin as an unexpected peroxisome proliferator-activated receptor γ (PPARγ) ligand with a unique binding mode and effective glucose-lowering activity in a mouse model of diabetes[J]. Diabetologia, 2013.   IF:10.5

2.png

文献来源:lncRNA HITT inhibits lactate production by repressing PKM2 oligomerization to reduce tumor growth and macrophage polarization[J]. Research, 2022.   IF:11


葡萄糖氧化酶法测定试剂盒 (Glucose Oxidase Method, GOD) E1010 点击下载
葡萄糖含量测定试剂盒结果计算模板 点击下载
  • 1. Liao Y, Chen Q, Liu L, et al. Amino acid is a major carbon source for hepatic lipogenesis[J]. Cell Metabolism, 2024.2024IF:27.7

    2. Wu Q, Liang X, Wang K, et al. Intestinal hypoxia-inducible factor 2α regulates lactate levels to shape the gut microbiome and alter thermogenesis[J]. Cell metabolism, 2021, 33(10): 1988-2003. e7.2021IF:27.7

    3. Deng S, Wang J, Hu Y, et al. Induction of therapeutic immunity and cancer eradication through biofunctionalized liposome-like nanovesicles derived from irradiated-cancer cells. J Nanobiotechnology. 2024 Apr 8;22(1):156. doi: 10.1186/s12951-024-02413-8. PMID: 38589867; PMCID: PMC11000387.2024IF:10.6

    4. Chen X, Tao X, Wang M, et al. Circulating extracellular vesicle-derived miR-1299 disrupts hepatic glucose homeostasis by targeting the STAT3/FAM3A axis in gestational diabetes mellitus[J]. Journal of Nanobiotechnology, 2024, 22(1): 509.2024IF:10.6

    5. Zhang T, Guo Z, Huo X, et al. Dysregulated lipid metabolism blunts the sensitivity of cancer cells to EZH2 inhibitor[J]. EBioMedicine, 2022, 77.2022IF:9.7

    6. Xu Y, Shi T, Cui X, et al. Asparagine reinforces mTORC1 signaling to boost thermogenesis and glycolysis in adipose tissues[J]. The EMBO journal, 2021, 40(24): e108069.2021IF:9.4

    7. Zhao K, Wang X, Zhao D, et al. lncRNA HITT inhibits lactate production by repressing PKM2 oligomerization to reduce tumor growth and macrophage polarization[J]. Research, 2022.2022IF:8.5

    8. Su M, Li C, Deng S, et al. Balance between the CMC/ACP Nanocomplex and Blood Assimilation Orchestrates Immunomodulation of the Biomineralized Collagen Matrix[J]. ACS Applied Materials & Interfaces, 2023, 15(50): 58166-58180.2023IF:8.3

    9. Song W, Gao Y, Wu J, et al. LMP1 enhances aerobic glycolysis in natural killer/T cell lymphoma[J]. Cell Death & Disease, 2024, 15(8): 604.2024IF:8.1

    10. Zhou F, Sheng C, Ma X, et al. BCKDH kinase promotes hepatic gluconeogenesis independent of BCKDHA[J]. Cell Death & Disease, 2024, 15(10): 736.2024IF:8.1

    11. He Y, Wang X, Lu W, et al. PGK1 contributes to tumorigenesis and sorafenib resistance of renal clear cell carcinoma via activating CXCR4/ERK signaling pathway and accelerating glycolysis[J]. Cell Death & Disease, 2022, 13(2): 118.2022IF:8.1

    12. Zhao D, Zheng S, Wang X, et al. iASPP is essential for HIF-1α stabilization to promote angiogenesis and glycolysis via attenuating VHL-mediated protein degradation[J]. Oncogene, 2022, 41(13): 1944-1958.2022IF:6.9

姓名:
电话:
单位:
课题组:
地址:
留言:
 
  • 服务保障

  • 大客户服务

  • 联系方式

    销售部:010-62027915-816,010-62027915-818,010-62053186

    技术部:010-62027915-807,010-60781808

    综合业务部:010-62027915-0,010-60781809

    微信:applygen2004

    QQ:2493578916

    邮箱:office@applygen.com

    地址:北京市昌平区振兴路36号2号楼3层330

微信公众号

小红书

版权所有 北京普利莱基因技术有限公司 Applygen Technologies Inc.

技术支持:华大网络